2016 Will Be The Warmest Year, But This Is How Deniers Will Spin It

R code for the analysis supporting this December 20, 2016 BuzzFeed News article on the likelihood that 2016 will be the warmest year on record, and how that is being spun by deniers of climate science. Supporting files are in this GitHub repository.

Data preparation

The following code loads data on the average global temperature from the National Oceanic and Atmospheric Adminstration for each month since January 1880.

It creates the columns Year, Date (to plot the entire temperature timeline), Date_2016 (with the monthly data for each year transposed to 2016, allowing all the data to be readily plotted on one yearly plot), and Weight (to allow the data for 2016 to be distinguished in the initial animation). The column Value gives the global average temperature, recorded as the difference from the global average for the 20th century for each month.

# load required packages
library(dplyr)
library(readr)

# load and process global temp data
global_temp <- read_csv("https://www.ncdc.noaa.gov/cag/time-series/global/globe/land_ocean/all/12/1880-2016.csv", skip = 3) %>%
  rename(Yr_Mo = Year) %>%
  mutate(Year = as.integer(substr(Yr_Mo,1,4)),
         Date = as.Date(paste0(substr(Yr_Mo,1,4),
                       "-",
                       substr(Yr_Mo,5,6),
                       "-01")),
         Date_2016 = as.Date(paste0("2016-",
                               substr(Yr_Mo,5,6),
                               "-01")),
         Weight = ifelse(Year == 2016,2,1))

Charts

To create animations from this code, you will need to install ImageMagick.

Animation of average global temperature by year

# load required packages
library(ggplot2)
library(gganimate)

# set palette and values for breaks
pal <- c("#313695","#4575b4","#74add1","#abd9e9","#e0f3f8","#ffffbf","#fee090","#fdae61","#f46d43","#d73027","#a50026")
values <- seq(-2, 2, length = 11)

# global temperature animation
temp_anim <- ggplot(global_temp, aes(x=Date_2016, y=Value, color = Value, group = Year, frame = Year, cumulative = TRUE)) +
  geom_path(aes(size=Weight, alpha=Weight)) + 
  scale_size_continuous(range = c(0.5, 1), guide = FALSE) +
  scale_alpha_continuous(range = c(0.5, 1), guide = FALSE) +
  theme_dark(base_size = 20, base_family = "Proxima Nova Semibold") +
  scale_color_gradientn(colors = pal, values=values, rescaler = function(x, ...) x, oob = identity, guide = FALSE) +
  ylab("Diff. from C20th average (ºC)") +
  xlab("") +
  scale_x_date(date_labels = "%b",
               date_breaks = "month") +
  theme(panel.grid.minor = element_blank())

# save as GIF
gg_animate(temp_anim, "temp_anim.gif", ani.width = 625, ani.height = 350,  interval = 0.05)
# increase delay on final frame
system("convert temp_anim.gif \\( +clone -set delay 300 \\) +swap +delete  temp_anim_with_pause.gif")

Full global average temperature timeline

# full global temperature timeline
full_series <- ggplot(global_temp, aes(x=Date, y=Value, color = Value)) +
  geom_path(size = 0.3) + 
  theme_dark(base_size = 19, base_family = "Proxima Nova Semibold") +
  scale_color_gradientn(colors = pal, values=values, rescaler = function(x, ...) x, oob = identity, guide = FALSE) +
  ylab("Diff. from C20th average (ºC)") +
  xlab("") +
  # geom_smooth(se = FALSE, color="white", size=0.5) +
  scale_x_date(date_labels = "%Y",
               breaks = seq(as.Date("1880-01-01"), as.Date("2015-01-01"), by="15 years"))  +
  theme(panel.grid.minor = element_blank())

plot(full_series)

Partial timeline, from March 2016 only

# global temperature timeline from Mar 2016 only
part_series <- ggplot(slice(global_temp, 1635:1643), aes(x=Date, y=Value, color = Value)) +
  geom_line(size = 0.5) + 
  theme_dark(base_size = 19, base_family = "Proxima Nova Semibold") +
  scale_color_gradientn(colors = pal, values=values, rescaler = function(x, ...) x, oob = identity, guide = FALSE) +
  ylab("Diff. from C20th average (ºC)") +
  xlab("") +
  scale_x_date(date_labels = "%b %Y") +
  theme(panel.grid.minor = element_blank())

plot(part_series)

Second animation, showing how climate deniers are spinning the data

After annotation in Adobe Illustrator and saving the two timelines in a folder called denial_frames, this code creates the second animation in the article.

# create GIF with fade transition between full and partial timelines
system("convert -delay 20 denial_frames/*.jpg -morph 8 denial.gif")

# increase delay on final frame
system("convert denial.gif \\( +clone -set delay 300 \\) +swap +delete  denial_with_pause.gif")

# increase delay on first frame
system("convert denial_with_pause.gif \\( -clone 0  -set delay 300 \\) -swap 0,-1 +delete denial_with_pause.gif")